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Diagnostic Judgment as a Function of the Pre-Processing of Evidence

LEE FRIEDMAN, WILLIAM C. HOWELL, and CARY R. JENSEN, Rice

University, Houston, Texas

Two experiments were conducted to determine how the quality

of a human judgment (in this case, military threat

diagnosis) is affected by various levels of pre-processing

applied to the raw predictive events when such processing is

carried out by the human and by a machine "aid." The

subject was required to estimate the threat of attack on the

friendly position (criterion) posed by levels of activity

observed in various enemy positions (cues). These enemy

positions differed in the degree of potential threat that

they posed. Overall threat judgments were made under

conditions in which a prior overt estimate of position

activity levels was or was not required. Machine-aiding

conditions were as follows: 1) no aiding, where the subject

simply observed raw events in 'real time" (Experiment 2),

2) automatic (Experiment 1 & 2) or self (Experiment 1)

tabulation of events, and 3) automatic computation of events

(Experiment 2). Finally, the rate of event occurrences was

manipulated (Experiment 2).. When subjects made overall

criterion judgments (threat evaluation) intuitively on the

basis of events observed in "real time", their performance

improved markedly by interposing cue estimation, even if cue

estimation was fairly inaccurate. if events were computed

automatically, permitting a more "analytic" threat judgment,

performance improved and the redundant estimation step was

-7
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not helpful. If events were merely tabulated, estimation

was helpful, but to an extent midway between the raw-

observation and automatic computation conditions.

Requests for reprints should be sent to Lee Friedman,

Psychology Department, Rice University, P. 0. Box 1892,

Houston, TX 77251.

Running Title: DIAGNOSTIC JUDGMENT

Key Words: diagnostic judgment, pre-processing of evidence

~o r

D I cf i n

Vce n o ]1

I4I

DI.I- C , .z/ ...

-I--.--b::;:.. to



Friedman, Howell, and Jensen 3

INTRODUCTION

A common task in military, medical, business and most

other decision systems is that of diagnosing the aggregate

meaning of a succession of equivocal predictive events --

test results, reports, indexes, observations. For example,

the physician examines the patient's medical history,

presenting symptoms, and test results in forming a medical

opinion; the businessperson weighs economic indices, cost

projections, and market analyses in judging the potential of

a new product; the commander evaluates a stream of

intelligence information in estimating the threat posed by

an enemy force.

With the evolution of sophisticated technologies for

obtaining and processing such predictive data, the demands

on the human decision maker have grown, as have the

possibilities for automating some or all of the component

functions (Schrenk, 1969; Slovic, 1981). In fact, use of

so-called "decision aids" -- particularly in diagnosis --

has become fairly common in contexts as varied as

professional sports, medicine, business, and military C3 I

systems (Sage, 1981; Wohl, 1981).

Despite these advances, however, the question of how best

to aliocate decision functions between man and machine Is

still unresolved (Slovic, Fischoff, & Lichtenstein, 1917>.

Part of the problem lies in our lack of understanding cf

exactly how human capabilities, task demands, and iecsion
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quality are related. True, a mass of research has appeared

over the last decade exposing various forms of human

"nonoptimality" (Kahneman, Slovic, and Tversky, 1982;

Tversky & Kahneman, 1974), but it remains to be seen how

general these "biases" are and to what extent they degrade

performance on actual decision problems (Cohen, 1979;

Einhorn & Hogarth, 1981; Hogarth, 1980). Most of the

research has dealt with a particular facet of judgment or

choice in isolation, using whatever task seemed most

appropriate for that particular function. Thus, for

example, strings of numbers or other events have been used

to assess frequency/probability estimation (Erlick, 1964);

the classical urn-and-balls or bookbag-and-poker-chips

problem has been a favorite Bayesian inference paradigm

(Edwards, 1968; Peterson & Beach, 1967); general knowledge

items have been used to study confidence in judgment

(Slovic, Fischoff, & Lichtenstein, 1976); numerical values

attached to predictive "cues" have been preferred in

policy-capturing and multiple-cue-probability-learning

research (Hammond, McClelland, & Mumpower, 1980; Kerkar,

1983); and carefully structured lotteries have been the main

vehicle for studying choice behavior (Payne, Laughhunn, &

Crum, 1982; Tversky & Kahneman, 1981).

In their natural habitat, of course, decision problems

are not conveniently structured into these elements.

Rarely, for example, does a personnel officer choose 7-,b

candidates merely by aggregating a set of ':ue" r oedi>:tor
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scores (as in policy capturing); more likely, he/she uses

such "processed" data in conjunction with raw observations

covering some of the same characteristics and others derived

from interviews, reference checks, and work history. Thus

it is hard to say how the well-established inferiority of

man to model in developing and applying a cue-weighting

strategy (Dawes & Corrigan, 1974; Goldberg, 1970) will

affect the actual quality of candidate selection.

Similarly, a military commander may well be subject to

biases associated with the heuristic estimation of event

probability (Sage, 1981; Wohl, 1981); yet in practice,

he/she may rarely make overt estimates, and the question of

whether such biases will seriously affect his/her ultimate

diagnosis or action cannot be directly answered. In a word,

we have difficulty translating the available data on human

cognitive limitations into decision system recommendations

because we do not know (1) how paradigm-specific the

limitations are, (2) how many of the basic cognitive

processes actually occur in any particular decision problem V
or (3) how such processes, if they occur, act and interact

to affect system output.

What we do know is that human judgment and decision

making is subject to a variety of subtle, formally

rrelevant task influences (Einhorn & Hogarth, 1981;

Hammond, 1981; Howell & Burnett, 1978; Kahneman ; T-;?rs~v.

1979). Further, it appears that merely requiring :he

decision maker to perform certain processinq s zes Ksuch as

.... .. - "" ' Y Z' ' " .. T 5", -2: 2 ' ' ' , 5 - : ., ", , , •... . ,



Friedman, Howell, and Jensen 6

overt frequency estimation) on the way to a terminal

response (such as diagnosis or action selection) can itself

influence the quality of the output (Howell & Kerkar, 1982).

In view of these considerations, it would seem useful to

study the issue of function allocation in a more

comprehensive fashion than has typically been done, using a

task comprising more than a single facet of the decision

process. The present studies represent a start in this

direction.

The purpose of the two experiments reported below was to

determine how the quality of a human judgment (in this case,

military threat diagnosis) is affected by various levels of

pre-processing applied to the raw predictive events when

such processing is carried out by the human and by a machine

"aid." In essence the paradigm extends the standard

"policy-capturing" task to a situation in which the "cue

values" (processed predictors) are derived from a more

fundamental set of events (raw observations) by man,

machine, or a combination. More specifically, the subject

is required to estimate the threat of attack on his position 1I
(criterion) posed by levels of activity observed in various

enemy positions (cues). The activity levels, however, are

themselves a direct reflection of the rate of observed

events over time. Thus with automated pre-processing of

cues (activity le~e s) the task becomes a straight policy-

capturing paradigm; with total manual processing, it becomes

a typical "intuition" task; with manual pre-processing, it
1~f
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becomes a structured, two-stage judgment task. Using this

approach it was possible to examine directly the quality of

the overall judgments as well as the various subprocesses

involved in each functional allocation.

EXPERIMENTS

Two studies were carried out using essentially the same

task and paradigm. Both involved (between-groups)

comparison of overall threat judgments made under conditions

in which an overt estimate of position activity Levels was

required (estimation groups) or was not required (no

estimation groups) for identical sets of raw observations

(citings). Both studies also included a between-groups

"aiding" manipulation. In Experiment 1 the aiding

manipulation concerned whether event citings were tabulated

automatically or whether subjects had to press particular

keys to tabulate the events (automatic tabulation vs. self-

tab-'ation). In Experiment 2 the aiding manipulation

consisted of three conditions: 1) no aiding (subjects

simply observed raw events in real time), 2) automatic

tabulation, as above, and 3) automated computation of cue

values. And finally, a within-groups manipulation (rate of

citings) was incorporated into the second study.

In view of the similarities between the two studies, all

common methodological features will be described here, and

any unique features will be noted in the subsequent

description of the individual experiments.
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Common Method

Subjects. A total of 150 Rice University undergraduate

students volunteered to participate in exchange for course

credit or pay ($4.00 per hour). The first 60 of these were

assigned randomly to the groups comprising Experiment 1; the

remaining 90 were assigned likewise to the six groups of

Experiment 2. All groups in both studies, therefore,

consisted of 15 subjects apiece.

Apparatus and procedure. Subjects served individually

for a single session which lasted approximately one hour.

During this time they completed 20 problems, each of which

consisted of a series of citings obtained over a several

minute period from four hypothetical enemy locations. Each

problem terminated with the subjects' evaluation of overall

threat posed for that problem. The entire experiment was

programmed on a TRS-80 Model III microprocessor which was

set up in a small experimental booth. Citings were

displayed as flashing digits "l", "2", "3", or "4", each of

which appeared in one of four respective areas of the CRT,

the latter representing the four enemy positions. Depending

upon the experimental conditions, citings were sometimes

preserved on the CRT for the duration of a problem as small

squares. These squares disappeared at the end of :he

problem when subjects were instructed to assess enemy

readiness and/or threat. Responses, ";hich were made via

designated keys on the keyboard, were recorded
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automatically.

Task. The instructions informed subjects that they were

to serve as military intelligence officers responsible for

monitoring activity in four regions controlled by enemy

forces and for evaluating the overall threat posed to

friendly forces. Enemy regions were designated according to

their suitability as sites from which to launch an attack:

Region 1 was the most suitable; Region 4, the least.

Activity was defined in terms of citings yielded by combined

survaillance systems: in Experiment 1, for example, 0-4

citings per region over the course of a problem was

considered normal under peaceful conditions, 5-9 was

moderate and could represent a build-up in readiness for

attack, 10-14 was high and indicative of a significant

build-up. Thus the subject was to consider both the

activity observed (cue value) and the prior suitability of

location (importance weight) in evaluating threat posed by

any region; overall threat was the aggregate for all four

regions.

In the course of a problem, the subject would see

anywhere from 0 to 56 citings distributed across the

regions. Distribution was varied over problems such that

normal, moderate and high activity levels occurred in each

region with equal frequency.

At the end of each problem, the subject was required to

estimate overall threat posed on a scale of 1 (no threat) to
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10 (attack imminent). In addition, he/she made an all-or-

none "war-peace" judgment following everything else, or---a{f..

any time during a problem when the perceived threat exceeded

5 on the overall scale. The "war-peace" feature was

included primarily to encourage subjects to remain cognizant

throughout the problem of their role as aggregator as well

as monitor, and generally to help maintain interest. No

explicit cost-payoff scheme was attached to it. In fact,

instructions clearly emphasized that the numerical threat

rating was the subjects' principal responsibility.
!

As noted earlier, one variable of interest was the presence or

absence of a "cue-value" estimation requirement. In this task,

activity level was the primary cue, hence frequency of citings

(normal, moderate, or high) constituted the estimation

requirement for those conditions where it applied. Therefore,

estimation groups judged activity level for each region just

prior to their overall threat evaluation, whereas no-estimation

groups simply rated overall threat.

An objective threat index was computed for each problem by

simply weighting each region's importance (1-4) by the number of

programmed citings and summing over the four regions. Similarly,

of course, an objective activity index was available in the

All-or-none data were analyzed but, since they yielded no
information other than that reflected in the more precise
ratings, they will not be discussed further.

A-'
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number of actual citings at each location. Using these measures

it was possible to calculate the accuracy of both kinds of

judgments as well as the all-or-none "war-peace" response. In

addition, by regressing threat evaluations (criterion values) on

activity levels (cue values) it was possible to derive estimates

of the subjective importance accorded each region (i.e. b-

weights), and by comparing these weights to the assigned (1-4)

values it was possible to evaluate the subject's weighting

policies.

EXPERIMENT 1

Method

In this study, the principal questions were whether overt

estimation of readiness at the four locations enhances aggregate

threat evaluation, and whether automatic tabulation adds to that

enhancement any more than self-tabulation does. The former

manipulation was clescribed previously. In the automatic

tabulation condition, each event (represented by a digit) flashed

on the CRT for .25 second, and was replaced by a small square

that remained on the screen during the problem until subjects
were instructed to assess readiness and/or threat. In the self-

tabulation condition, subjects had to press a particular key

("1", "2", "3", or "4", depending upon the region where the event

occured) after each event in order to have it tabulated

(preserved as a square). The design was a simple 2 X 2 factorial

combination of these variables using four groups of 15 subjects

each. The actual citing frequencies used in each region during a

problem were drawn randomly from normal distributions over the

I4
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ranges 0-4 (mean = 2), 5-9 (mean = 7), and 10-14 (mean = 12) for

"normal", "moderate", and "high" readiness respectively.

Results and Discussion

Correlations of threat ratings with objective values are shown

in Table 1.

Insert Table 1 about here

A between-groups analysis of variance revealed a marginally

significant estimation effect, F (1, 56) = 3.58, p = 0.06, but

neither aiding nor its interaction with estimation approached

significance, F (1, 56) < 1.0.

The findings using the more process-oriented "policy-

capturing" measure, while consistent with the accuracy index,

were a bit more clear-cut as shown in Table 2. The b-weights

obtained under estimation conditions were considerably closer to

the optimal values over the four regions than were those yielded

by judgments made directly from observations (no-estimation

conditions). in this case, a MANOVA was the appropriate

statistical test, and the Hotelling-Lawley trace was used to

approximate F. Here, the main effect of estimation was

significant, _ (4, 53) = 2.76, p < 0.04, and again, neither

aiding nor its interaction with the estimation variables was

significant, both _ (4, 53) < 1.30, p - 0.29.

insert Taz e 2 acout here

4
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In general, then, the results support the hypothesis that

requiring an overt estimate of cue values enhances both the use

of those cues in aggregate judgment and the overall quality of

the threat assessment. The fact that automatic tabulation of

events provided little additional benefit over self-tabulation

may be attributable to a ceiling effect. Subjects in the

estimation groups made correct frequency categorizations on 92%

of the problems in both self and automatic tabulation conditons.

Apparently, as long as events were preserved on the CRT, as they

were in both aiding conditions, it did not matter whether the

subject had to emit responses to preserve those events. It is

worth noting, however, that even at this "ceiling" level, overt

estimation enhanced the ultimate diagnosis. The second

experiment included more demanding conditions.

EXPERIMENT 2

Our purpose of this study was to determine the replicability

of the estimation effect found in Experiment 1 under a wider

range of aiding and difficulty conditions. Another was to extend

aiding to the point of actually calculating cue values (citing

frequencies) as is typical in policy-capturing research. With

these added conditions it was possible to compare threat

evaluation (diagnosis) performance based on raw observations with

that for partially and fully processed predictive data as

discussed in the Introduction. The expectation was that aiding

would help, but that :e est:iation requirement would serve mucn
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the same purpose under conditions conducive to accurate readiness

estimation. Under more difficult estimation conditions, of

course, the relative effectiveness of the estimation requirement

should decline since the overall threat assessment would be based

on less accurate "cue values".

Method

The basic design replicated the automatic tabulation condition

of Experiment 1 and added two levels of aiding -- 1) the direct

computation of citing frequencies, and 2) an unaided condition in

which subjects had to deal with observed events in real time.

Thus it consisted of six groups obtained by crossing the

estimation variable (two levels) with aiding conditions (unaided,

tabulation, and computation). The difficulty variable was

manipulated within subjects by using two levels of input rate:

the easier condition, 3 min. per problem, was consistent with

Experiment 1; the more difficult, 30 sec. per problem, was chosen

to eliminate any possibility of actually counting the citings.

The difficulty variable was applied only to the unaided and

tabulation groups since the computation groups did not actually

observe citings (so as to ensure that judgments were based

exclusively on the processed cue values). Therefore, there were

actually two designs: a 3 X 2 between-groups factorial with

estimation difficulty coiiaosed, and a 2 X 2 X 2 mixed factorial

with the computation conditions omitted.

The only other notewor:hv -ifferences in methodology between

this study and :he previouis :ne were a saignt increase in the

" . . " . ' " . . . . . . , . -, - . • .. .. . . . .; " . "- -
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citing frequencies (a maximum of 20 rather than 14 in each region [|

per problem) and a corresponding adjustment in the activity-level

ranges (normal readiness was 0-6 citings per region with a mean

of 3; moderate, 7-13 with a mean of 10; high, 14-20 with a mean

of 17). Since the rate of citings was varied within subjects in

the unaided and tabulation conditions, order effects were

controlled by randomizing the presentation of slow and fast

problems separately for each subject.

Results and Discussion

The data for overall quality of threat evaluations, again

expressed in terms of mean correlations between obtained and

optimal ratings, are summarized in Table 3.

Insert Table 3 about here

As predicted, performance improved systematically with level of

aiding in the absence of any overt cue estimation requirement,

but estimation alone produced substantial gains as well (from r=

0.47 to 0.79). In fact, the 0.79 compares favorably with the

average for all aided conditions, which was 0.84. The

combination of aiding and estimation, however, added very little

to either alone. Threat evaluation performance was not

significantly different among the three groups who estimated

readiness. Further, no sigificant differences in aiding

(collapsed over tabulation and computation) appeared when threat

evaluation was oreceeded by readiness (cue) estimation (F < 1).

However, subjects i. -e -abuLationiestimation group had

- I
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significantly higher correlations than those who had events

tabulated but did not estimate readiness.

The above conclusions are supported by a highly significant

estimation X aiding interaction, F (2 84) = 23.50, p < 0.0001,

and by post hoc comparisons of estimation with no-estimation

means: F (1, 84) = 66.36, P < 0.0001 for the unaided condition;

4.82, p < 0.05 for the tabulation condition; and 2.64, p > 0.10

for the computation condition (reversed effect). The above

conclusions are also supported by post hoc comparisons of means

from the three aiding conditions: F(2, 84) = 133.64, p < 0.0001,

for the no-estimation condition; F(2, 84) = 2.73, p > 0.05, for

the estimation condition. Regarding the nonsignificant

estimation effect for computation groups, it should be noted that

the only readiness estimation involved in the computation

condition was classifying the presented citing-frequency numbers

into the proper readiness ranges. Despite the simplicity of this

requirement, accuracy was not perfect (98%), which probably

accounts for the nonsignificant decrement with estimation. Ir

The difficulty variable apparently did not affect the quality

of threat evaluations of unaided and tabulation groups. The

difficulty effect was not statistically significant, F (1, 56) =

2.23, p > 0.14; nor were any interactions of difficulty with the

between-groups variables. However, the estimation X aiding

interaction was highly significant, thus substantiating the

results of the between-grcups analyses, F (1, 56) = 26.69 D<

0.0001. in Table 4 it appears :hat while estimating readiness -

- ,- S .,- .. ., -
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improved threat evaluations of both unaided and tabulation

groups, it helped the unaided group considerably more.

Insert Table 4 about here

In contrast to the overall threat judgment, the accuracy of

aided readiness estimates was unaffected by difficulty (95% for

fast vs. 98% for slow conditions). However, the mean difference

between unaided estimates for fast and slow conditions t76% vs.

93%, respectively) was significant, _t_ (14) = 8.53, p < 0.0001.

The fact that unaided subjects maintain accurate threat

evaluations even when t1eir readiness estimates are inaccurate

constitutes rather definitive substantiation of the estimation

effect. Even fairly inaccurate cue value estimates can lead to

improved threat evaluations.

In sum, the results of these analyses indicate that when

decision makers are forced to make overall criterion judqments

(threat evaluation) intuitively on the basis of events observed

in "real time", their performance can be improved markedly by

interposing a processing step (cue estimation). However, if this

processing is done automatically, permitting a more "analytic"

approach to threat judgment, performance improves and the

redundant estimation step is not helpful. if the event

occurrences are mere>i oreserved but not processed, estimation is

again helpfui, but -i- in extent midway between the raw-

observation ard -:e rr::mattc processing conditions.
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The above results are strengthened even further by the process

(b-weight) measures as shown in Table 5.

Insert Table 5 about here

Separate MANOVAS for the three aiding groups yielded a

significant estimation effect only in the unaided condition: the

b-weights obtained with an estimation step were distributed more

optimally than those obtained without one in this completely

manual condition, F (4, 25) = 2.93, p < 0.04. While neither of

the aided conditions yielded a significant estimation difference,

F < 1.0, the trend under the tabulation condition was in the same

direction as that for the unaided condition. It will be recalled

that this trend also was apparent for estimation groups in

Experiment 1. In particular both unaided and tabulation groups

that are required to make intervening estimates of cue values

tend to employ all of the cues in their overall threat judgments,

whereas groups that do not estimate cue values tend to ignore all

but the most predictive cue.

In the repeated-measures (i.e. 2 X 2 X 2) MANOVA, the

difficulty variable had a significant main effect on the

distribution of b-weights, . (4,53) = 2.78, p < 0.04, as did its

interaction with the other two variables, F (4, 53) - 2.68, p <

0.04. Since the principal reason for this interaction appears to

have been a poor distribution of weights under the unaided, no-

estimation :ondition, the results are consistent with the

conclusion :-at estimation helps most when conditions are t

daft'~.
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otherwise not very conducive to judgment. Surprisingly, this is

true even though the estimated cue values under the unaided

condition were 12% less accurate, on the average, than under any

of the aided conditions.

CONCLUSION

The two studies reported here offer strong support for the

proposition that higher-order, integrative judgments (threat

diagnosis) benefit from the explicit "processing" of lower-order

information whether carried out manually or through machine

aiding. Conversely, and perhaps more importantly, serious

deficiencies in the quality of diagnostic judgments are likely if

the human decision maker draws inferences directly from a stream

of "raw" observations. In such situations, he/she tends to limit

consideration to the most predictive items, virtually ignoring

lesser -- yet still very useful -- cues.

The tendency toward overselection in the use of diagnostic

evidence has, of course, been reported before in other contexts

(e. g., Nisbett & Ross, 1980). The typical explanation is that

it represents a means of coping with information overload, a

somewhat adaptive mechanism whereby the human compensates for his

limited capacity by simplifying the environment (and perhaps

losing some predictive power in the process). Neither

information overload nor capacity limits, however, seem to

account entirely for the present results. The estimation

requirement added to, rather than subtracted from, the overall

rask demands, yet it produced a consistent improvement in unaided
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performance even when the estimated values were not very

accurate. Similarly, increasing the burden further by speeding

up the input rate only enhanced the value of the estimation

requirement (although, of course, it detracted somewhat from

overall performance).

A more plausible explanation in the present case is that both

the estimation requirement and machine aiding served to cast the

predictive information into a form that was conducive to

integration (increasing, in a sense, its compatability with the

required cognitive operations). Such pre-processing presumably

did simplify the ultimate integration step, but in a way that

encouraged preserving rather than discarding predictive

information. The important point is that without an explicit

pre-processing step, subjects tended to simplify in other, less

productive ways (overselection).

The results support Hammond's (1980) thesis that congruence

between the decision maker's mode of cognition and the mode of

processing induced by the task characteristics yields the most

nearly optimal judgments. The nature of the threat evaluation

task was such that it could be performed most optimally in an

analytical framework. When cue estimation helped to provide that

framework (by transforming real-time events into cue values), the

decision maker's performance improved. The manual processing of

cues may have shifted the decision maker from an intuitive to an

analytical mode of processing. However, when an analytical

:ramework was inherent in the task itself (through the automated
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pre-processing of cues), cue estimation was not helpful.

Finally, when the aiding condition provided a framework midway

between raw events and pre-processed cue values, estimation was

helpful to an extent midway between the raw-observation and

automatic-processing conditions.

From a practical standpoint, the present results have two

major implications. First, one cannot assume that the weighting

strategies revealed through the typical policy-capturing study

apply to "unprocessed" predictive data. Structuring the problem

so as to provide the "judge" with explicit "cue values" dictates

to an extent how he/she will integrate those cues.

Secondly, one does not have to incorporate machine aiding into

the system in order to realize some of the benefits from

structuring or pre-processing a stream of predictive evidence.

The pre-processing can be done manually. This could be an

important consideration in situations that, for one reason or

another, preclude automated processing. The fact that merely

requiring an estimation step can markedly enhance diagnostic

judgment provides the system designer with a useful alternative.

Of course, the present work is only a beginning; much remains to

be learned about the influence of various forms of pre-processing

on various kinds of subsequent judgments and decisions. We have

examined but one set of processes in a fairly simple task

setting. However, finding the pronounced effects that we did in

even this limited context suggests that the approach is well

worth pursuing into other, more complex, task domains. A
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specific question in need of an answer is how far accuracy of

manual pre-processing can decline before the advantage of that

pre-processing is offset by the poor quality of the resulting

cues.
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Table 1

Experiment 1

Mean Correlations Between Actual and Optimal Threat Assessments

Aiding

Automatic Tabulation Self Tabulation

Group M SD M SD

Estimation .82 .09 .82 .15

No Estimation .75 .21 .74 .12

ft

. . . . . . . . . . . . . . . . . . . . . . . .
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Table 2

Experiment 1

Mean B-Weights of Each Region For the Estimation

and No Estimation Group

Region

1 2 3 4

Group M SD M SD M SD M SD

Est. 5.41 1.31 3.14 1.24 1.48 1.60 0.82 1.07

No Est. 5.00 1.72 2.40 1.24 0.87 1.54 0.66 1.61

Optimal 4.00 3.00 2.00 1.00

4t
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Table 3

Experiment 2

Mean Correlations Between Actual and Optimal Threat Assessments

Aiding

None Tabulation Computation

Group M SD M SD M SD

Est. .79 .08 .86 .09 .83 .07

No Est. .47 .18 .77 .10 .90 .07



Friedman, Howell, and Jensen 29

Table 4

Experiment 2

Mean Correlations Between Actual/Optimal Threat Assessments

Aiding

None Tabulation

Fast Rate Slow Rate Fast Rate Slow Rate

Group M SD M SD M SD M SD

Est. .77 .10 .82 .10 .83 .i .90 .06

No Est. .52 .19 .50 .25 .78 .-.2 .80 .i!
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Table 5

Experiment 2

Mean B-Weights For Each Region For the Different

Aiding and Estimation Groups

Unaided Group

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD

Est. 5.51 1.42 2.65 1.50 0.73 1.08 0.31 1.36

No Est. 4.12 2.03 1.52 1.80 -.07 2.09 -.88 1.74

Optimal 4.00 3.00 2.00 1.00

Tabulation Group

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD

Est. 5.48 2.21 3.12 1.18 1.20 1.61 .38 1.20

No Est. 4.67 2.06 2.70 1.02 1.14 1.40 .05 2.39

Optimal 4.00 3.00 2.00 1.00

Computation Group

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SI)

Est. 5.64 1.34 3.16 1.01 1.00 1.07 .78 1.39

No Est. 6.01 1.31 3.51 1.26 1.01 0.95 .33 0.88

Optimal 4.00 3.00 2.00 ".00

L4
.. !

I
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APPENDIX

Table 1

Experiment 2

Mean B-Weights For Each Region For the Different

Aiding, Estimation, and Difficulty (Fast Rate vs. Slow Rate)

Conditions

Unaided Group - Fast Rate

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD

Est. 4.96 1.58 2.12 2.08 0.84 1.34 0.66 2.05

No Est. 3.83 3.27 1.75 2.18 0.34 3.21 -1.94 2.52

Optimal 4.00 3.00 2.00 1.00

Unaided Group - Slow Rate

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD
I.

Est. 6.03 1.66 3.19 1.23 0.73 1.33 0.10 1.54

No Est. 4.13 2.20 1.28 1.97 -0.47 2.04 0.18 2.21

Optimal 4.00 3.00 2.00 1.00

Tabulation Group - Fast Rate

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD

Est. 5.62 2.47 2.63 1.27 9.77 1.92 0.25 1.48

No Est. 4.94 1.93 2.18 1.08 0.33 1.68 0.01 2.72

Optimal 4.00 3.00 2.00 1.00
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Tabulation Group - Slow Rate

Region 1 Region 2 Region 3 Region 4

Group M SD M SD M SD M SD

Est. 4.95 2.48 3.62 1.27 1.62 1.74 0.51 1.17

No Est. 4.39 2.80 3.22 1.54 1.40 1.56 0.03 2.57

Optimal 4.00 3.00 2.00 1.00

Ai
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